Two Isomeric Forms Of Everyday Water Show Different Reaction Rates


Share post:

Researchers have investigated for the first time how two different forms known of water behave differently when undergoing chemical reactions

Water is a chemical entity, a molecule in which a single oxygen atom is linked to two hydrogen atoms (H2O). Water exists as liquid, solid (ice) and gas (vapours). It is among the few chemicals which do not contain carbon and still can be liquid at room temperature (about 20 degrees). Water is ubiquitous and important for life. At the molecular level it is well known that everyday water exists in two different forms but this information is not of common knowledge. These two forms of water are called isomers and are referred to as ortho- or para- water. The main difference between these forms is very subtle and is simply the relative orientation of the nuclear spins of the two hydrogen atoms which are aligned in either same or opposite direction, hence their names. This spin of hydrogen atoms is due to atomic physics though this phenomenon is not yet fully understood. These two forms have identical physical properties and it has been believed so far that they should also then have identical chemical properties.

In a recent study published in Nature Communications, researchers from the University of Basel, Hamburg have for the first time investigated the difference in chemical reactivity of these two forms of water and have proven that ortho- and para- forms react very differently. Chemical reactivity means the way or the ability by which a molecule undergoes a chemical reaction. The study involved separation of water into its two isomeric forms (ortho- and para-) using an electrostatic deflector by involving electric fields. Since both these isomers are practically the same and have identical physical properties, this separation process is complex and challenging. The separation was achieved by this group of researchers by using a method based of electric fields developed by them for Free-Electron Laser Science. The deflector introduces an electric field to a beam of atomized water. Since there is crucial difference in nuclear spin in the two isomers, this slightly impacts the way by which atoms interact with this electric field. Therefore, as the water travels through the deflector it starts separating into its two forms ortho- and para-.

Researchers have demonstrated that para- water reacts around 25 percent faster than ortho-water and its able to attract to a reaction partner more strongly. This is definitely explained by the difference in the nuclear spin which influences the rotation of the water molecules. Also, para- water’s electrical field is able to attract the ions faster. The group further performed computer simulations of water molecules to corroborate their findings. All experiments were done with molecules in very low temperature settings almost -273 degrees Celsius. This is an important factor as explained by the authors that only in such conditions the individual quantum states and energy content of molecules can be well defined and better controlled. Which means that water molecule stabilizes as either of its two forms and their differences become obvious and clear. Thus, investigating chemical reactions can then reveal underlying mechanisms and dynamics leading to a better understanding. However, the practical use of this study might not be very high at this time.


{You may read the original research paper by clicking the DOI link given below in the list of cited source(s)}


Kilaj A et al 2018. Observation of different reactivities of para and ortho-water towards trapped diazenylium ions. Nature Communications. 9(1).

Scientific European® | | Significant advances in science. Impact on humankind. Inspiring minds.


Please enter your comment!
Please enter your name here

For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

I agree to these terms.

For the benefit of students and readers (neural translation of) Scientific European is available in many languages

Deutsch Română
Français Nederlands
Русский Português
简体中文 Italiano
日本語 Български
Español Filipino
हिन्दी ગુજરાતી
العربية தமிழ்
Ελληνικά اردو
বাংলা MORE

Related articles

Stem Cell Models of Diseases: First Model of Albinism Developed

Scientists have developed the first patient-derived stem cell model of albinism. The model will help studying eye conditions...

Mars Orbiter Mission (MOM) of ISRO: New Insight into Prediction of Solar Activity

The researchers have studied the turbulence in Sun’s corona using radio signals sent to Earth by the ultra-low-cost...

‘‘A living WHO guideline on drugs for COVID-19’’: The Eighth version (Seventh update) Released

The eighth version (seventh update) of a living guideline is released. It replaces earlier versions. The latest update...

….Pale Blue Dot, the only Home We’ve Ever Known

''....astronomy is a humbling and character-building experience. There is perhaps no better demonstration of the folly of human...